JDBC
Components of JDBC :

Main Components :

1. The JDBC API — Provides various methods and interfaces for easy and
effective communication with databases. (java.sgl.*,javax.sql.*)
DriverManager
Driver
Connection
Statement
PreapredStatement
CallableStatement
ResultSet
DatabaseMetaData
Blob
Clob

2. JDBC DriverManager

JDBC Driver manager loads the database-specific driver into an application in order
to establish the connection with the database.

3. JDBC Test suite: JDBC Test suite facilitates the programmer to test the various
operations such as deletion, updation, insertion that are being executed by the JDBC
Drivers or not.

4. JDBC-ODBC Bridge Drivers: JDBC-ODBC Bridge Drivers are used to connect the
database drivers to the database. The bridge does the translation of the JDBC method
calls into the ODBC method call.

JDBC ARCHITECTURE

Java Application

JDBC API

JDBC Driver Manger
JDBC Drivers

Any other
data source

Qracle

JDBC Versions(Specifications) :

Versions Of JDBC

Initially, Sun Microsystems had released JDBC in JDK 1.1 on Feb 19, 1997.

After that, it has been part of the Java Platform.

The following table contains JDBC versions and implementations:

JDBC Version {Ellljlem S Year

JDBC 1.2 JDK 1.1 1997

JDBC 2.1 JDK 1.2 1999

JDBC 3.0 JDK 1.4 2001

JDBC 4.0 Java SE 6 2006

JDBC 4.1 Java SE 7 2011

JDBC 4.2 Java SE 8 2014

JDBC 4.3 Java SE 9 2017

Drivers for Different Databases

Database 1{1[:1[:1(2- Driver Provider | 1 \ R File Name

Oracle Corporat‘ion

mysql-connector-java-
VERSION.jar

Oracle Corporation

0j dbc8 jar

Microsoft Corporat‘ion

sqljdbc41 .jar, sqljdbc42 jar

PostgreSQL Global

Development Group

postgj‘esql—VERSIO N.jar

Xerial. org

sqlite-jdbc-VERSION jar

UCanAccess.com

11cm1access—VERSION.jar

Types of Drivers:

There are 4 different types of Drivers available in JDBC. They are classified based on
the technique which is used to access a Database.

They are as follows:

Type | : IDBC- ODBC Bridge

Type 11: Native API Partly Java Driver

Type I11: Network Protocol(middleware Server Driver)- Fully Java Driver

Type IV: Thin Driver- Fully Java Driver

& =

Type -1 Driver - JDBC ODBC Bridge Driver
P —— i
{(JdbcaPl) .
E P o [vendor |
; Java 7 JDBC-ODBC ODBC \ Database ‘
| deRticton bridge driver

Figure- JDBC-ODBC Bridge Driver

Type -2 Driver - Native API Driver

‘ Vendor
£ s Database

'
'
|
|
|
|
)
'
I
|
|
|
]
' - N\
|
|
|
|
'
'
|
|
|
|
)
'
I

Java " NativeAPl |5
Application s Library .

Client Machine

Figure- Native API Driver

Type -3 Driver- Network Protocol Driver

Server side

1 1
1 '
| |
' 1
1 1
' 1
1 1
' '
| |
| 1
1 1
1 1
1 1
" £
' S
) B
" =
' e
| TR
1 -— 1
1 [1
| 1
c
1 1
' 2 '
. g .
' i~ 1
1 = 1
i 2 |
1 < 1
' '
| — |
N O 4

Figure- Network Protocol Driver

Type -4 Driver — Thin Driver

Client Machine

Figure- Thin Driver

Pros & Cons

1. JDBC-ODBC bridge driver:

JDBC-ODBC bridge driver is a native code driver which uses ODBC driver to
connect with the database. It converts JDBC method calls into ODBC function calls.
It is also known as Type 1 driver.

Advantages:

It can be used with any database for which an ODBC driver is installed.
Disadvantages:

Performance is not good as it converts JDBC method calls into ODBC function calls.
ODBC driver needs to be installed on the client machine.

Platform dependent.

2. Native-API driver:

Native-API driver uses the client-side libraries of the database. It converts JDBC
method calls into native calls of the database API. It is partially written in java. It is
also known as Type 2 driver.

Advantages:

It is faster than a JDBC-ODBC bridge driver.

Disadvantages:

Platform dependent.

The vendor client library needs to be installed on the client machine.

3. Network-Protocol driver:

Network-Protocol driver is a pure java driver which uses a middle-tier to
converts JDBC calls directly or indirectly into database specific calls. Multiple types
of databases can be accessed at the same time. It is a platform independent driver. It is
also known as Type 3 or MiddleWare driver.

Advantages:

Platform independent.

Faster from Typel and Type2 drivers.

It follows a three tier communication approach.

Multiple types of databases can be accessed at the same time.
Disadvantages:

It requires database-specific coding to be done in the middle tier.

4. Thin driver:

Thin driver is a pure java driver which converts JDBC calls directly into the database
specific calls. It is a platform independent driver. It is also known as Type 4 or
Database-Protocol driver.

Advantages:

Platform independent.

Faster than all other drivers.

Disadvantages:

It is database dependent.

Multiple types of databases can’t be accessed at the same time.

Steps:

1. Load and Register the Driver

2. Establish a connection

3. Create the statement and execute the statement
4. Process the results

5. Close the connection

Connection (using NOTEPAD)

Installation

To connect java application with the mysql (database, mysglconnector.jar file is
required to be loaded.

download the jar file mysql-connector.jar

Two ways to load the jar file:

Paste the mysglconnector.jar file in jre/lib/ext folder

Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file
here. (if JRE is not available please in JAVA folder)

Set classpath

There are two ways to set the classpath:

Temporary

C:>set classpath=c:\folder\mysgl-connector-java-5.0.8-bin.jar;.;

Permanent

Go to environment variable then click on new tab. In variable name

write classpath and in variable value paste the path to the mysqlconnector.jar file by
appending mysqlconnector.jar;.; as C:\folder\mysql-connector-java-5.0.8-bin.jar;.;

ECLIPSE

Store connector.jar file in some location
Click right click on Project folder,

Chose Build Path

Chose

Add External Archives /Configure Build Path
Configure Build Path

In Libraries, click on Classpath, Add External JARS
Visual Studio Code

Download and Install

Add JAVA extension pack

Chose Explorer

Chose Create JAVA Project

File Edit Selection View Go Run

) Get Started X

Get Started with Java Development

Get your runtime ready

The Exte

runtime installed

Install JDK

Explore your project

Launch, debug and test

d Hat

Spring Initializr Java Support

installed o

g on Install JDK

) verify it's installed, and try running

the following comma

java -version

Terminal Help

= Extension: Extension Pack for Java X

NO FOLDER OPENED
Extension P

Open Folder

Details
Extension Pack (6)

Language Support for Java(TM) by Red
Create Java Project

OUTLINE
TIMELINE

MAVEN Extensions Included
@0A0

= Extension: Extension Pack for Java X [-+

NO FOLDER OPENED

You have not yet opened a folder Extension Pa

Microsoft D 151
Open Folder

vopular e

> Select Folder
« 1 WT > UNIT3

Organize > New folder
To learn more about how to use git and source ~
@ OneDrive
or crea CallableStmtWithResultSet
= This PC
CreateTable
¥ 3D Objects

[Desktop

z CursorEx
Create Java
CursorExample
3 Documents CursorExample2
& Downloads Database_Access_Prg

d Music DataBaseSample
v 56

Folder: | UNIT 3

Select the project location Cancel

OUTLINE
TIMELINE
JAVA PROJECTS

MAVEN Extensions Included

Create JAVA Project :

Then Chose the type of Project and Location

Once the location is selected, Specify the name of the Project, then JAVA project will
be created and by default APP.java file will be created, Next Add jar file in referenced
libraries.

OUTLINE
TIMELINE

JAVA PROJECTS

inT,Col1 Spaces4 UFS UF {Jiwa A O

arlier this week (1)

S CoiaE mysql-connector

Documents
&= Pictures

2-2(PVP19)Paper

Python Work

Jar Files

Select Jar Libraries

OUTLINE
TIMELINE

In1,Col1 Spacesi4 UTF-8 LF (}Java & O

JDBC API

Provides classes and interfaces that are used by Java Applications to communicate
databases.

The JDBC driver communicates with a database for any requests made by a Java
application by using the JDBC API.

The JDBC driver not only process SQL commands, but also sends back the result of
processing of these SQL commands.

JDBC follows write once run anywhere behaviour of JAVA.

The JDBC API is part of Java SE and is available to Java Platform EE.

JDBC 4.0 mainly uses two packages:
i)Java.sgl ii) Javax.sql

java.sgl package

Also called as JDBC Core API.

Package contains classes and interfaces to perform JDBC operations such as creating
and executing SQL queries.

These classes and interfaces further classified into:

Connection management — establish a connection with database

Database access — Execution of SQL Queries- after connection is established

Data types- SQL Datatypes (Ex: BLOB,CLOB, UDT....)

Database metadata — is used to retrieve info about Database

Exceptions and warnings — handle unwanted exceptions raised by the application

javax.sgl package

Also called as JDBC Extension API (supplement of java.sql package).
Which provides Classes and interfaces to access server-side data sources.

Classified into
DataSource

Connection and statement pooling — establish number of connections
Distributed transaction — supports accessing of data from multiple servers
Rowsets — is used to retrieve data from a network (java-bean)

Exploring Major Classes and Interfaces

Major classes and interfaces:
DriverManager Class

Driver Interface

Connection Interface
Statement Interface
ResultSet Interface

-~
JDBC Application Architecture
Application

Connection Statement EEEUltS et
N
N
Driver I"».-'Ia_nagar
| Dnver ﬁnver Dnver
h

S

~
DriverManager Class

The task of the DriverManager class is to l.:eep track of the drivers
that are available and handles establishing a connection between a

database and the appropriate driver.

All are static methods.

Method MName

CrescTiption

static Connection void getConnection
(String url)

It tnes to establish the comectionto a
grven database TTEL

Sting user, String password)

static Connection getCormection (String url, | It tries to establizh the cormection to a

given database TTEL.

N

static Connection getConnection(Strmg url,
Properties mfo)

Ittrias to astablish the connaction to a given

databasa URL. Proparty is in the form of Objact .

Propartiss p=naw Propertias();

p put{“user”,"root”);

p put{“passwosd”,"admin”);

C o m n 2 ¢ t i o =n

er=Drivethlanapers atﬂ-jnnn_lutnnf"URL“:p];

static Drvers(] getDrvers()

It retrizves the smimeration of the drivers which
has been ragistared with the Driverhanasar class

static Driver getDriver(Strmg URL)

{(rivena URL, this method raturns a driver that
can indarstand URL

Static void deregisterDriver(Driver)

Unragistars the driver

St voud registerDrverDriver)

Bagistars the driver

JDBC Database URL

[jd bCZm}fsqli][H host _name: protocol [/ database_name}

[[/

The comms The machine The port The path to
protocol holding the used for the the database
database. connection. on the machifp

e.g. jdbc:mysql://localhost:3306/suresh

S
Driver Interface
* Implemented by DriverManager Class
Method Dacri]}tiun
public boolean acceptsURL(String url) Checks whether the format of the

given LIEL is accul'djng to the format
or not.

public abstract Connection connect(String Try to make a database connection to

url, Properties info) the given LUIRL.

public abstract int getMajorVersion() Get the driver's major version
number.

public abstract int getMmnorVersion() Get the driver's minor version
number.

public abstract boolean jdbc Complianti) Report whether the Driverisa
genuine [DEC COMPLIANT driver

Connection Interface

= To conunimicate with a database using JDDBC . we mmist
first establish a connection to the database through the
appropriate driver.

= This can be done with java.sqgl.Connection interface.

= "Within the context of a Connection. SOQL. statements
are executed and results are retiuwmned

= The connection object is obtained by the
Driverhfanager. getConnection() method by supplyving
the Database location and authentication details.

(o We can use the Connection object(ref) for the
following things:

1. It creates the Statement, PreparedStatement and
Callabl eStatement objects for executing the SQL statements.

Statement
It is uszed to execute SOL staternents
Prepared Statement

Llzed to prepare statements with place holders(?) to set the values at
run time

Callable Statement

Llzed to execute functions or procedures available in data base

2). It helps us to Commit or roll back a jdbc
fransaction

Feturs Type Methed Name Descripticn
. Ealzases a Connaction's databasa and JDEC
veid dlosel) msouces immediataly
Malkas all changas mads sines the pravious
void commit() commit o rollback parmanant and relsases anv
database locks currantly held by the Commaction.
Creates a Statement objact for sending SQL
Statamant redteStatamant]) statemants to the database.
boolean i5Closad]) Tasts to s2a if 2 Commection is dosad.
_ Creatas a CallablaStatement object for calling
CallablaStatamant aCall{Strin =
e prepare(Call(String <q]) datahasa stored procaduras.
preparadtatement(Sting | Craates a PraparadStatement objact for sending
Preparecitstemant |) perametecized SQL statements to the datsbase
Drops all changas mads sincs the pravious
void rollback(). commit or rollback and raleases anv databass
locks curmently hald by this Commaction
Void savaPpint() Sats unamad sava point
SavaPoint savaPpint{ Strine name) | Sats save point with specified nama,

A Simple JDBC application

TV
s= i onnection

i Eiement

% -
i B
E)

Result kzndling

mport java.sgl.¥;
public class jdbetest {

public static void mam(String args[]){

try{

Class forName("com mysql jdbe Drrver”);
Comnection con = DriverhManager getConnection
("ydbemysgl:/ localhost: 3306/5uresh™, "user”, "passwd");
Statement stmt = con.createStatement();
ResultSet 13 = stmt executeCuery
("select no szl from EMP where no < 30");

while(rs next())

stmt.closa()
con.closs();

} catch(Exception) {
System.err println(e);

H

System out println(rs getlnt(1) + + rs.getlnt(2));

~N

Stateme

nt Interface

The Statement interface creates an c:bject that is used to execute a
static SQL statement and obtain the results produced by it.
public interface Statement

Return Tvpe Meihod Description
" Eeleases this Statement object’s datzbase and
void close) JDBC resources immediately
i Executes an 5L statement that might refum
boolean execut={“30L Cuery™)

multiple results. -DDL

execute(uery(“SELECT

Executes an SOL statement that retumns a

ResultSet Queries™) smgle ResultSet object
_ executeUpdate{“ DML Executes an SQL INSERT, UFDATE, or
mt ..
Chuaries™) DELETE statemn ent.
PesultSet BEetrives the result et generated by the
getResultSet() sxacute() method.
oid addBatch{“SQL QUEERY™) | Add the commands to the existing list of
ot execut=Batch() commands for the statement obejet

Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Amaretto’, 49, 9.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Hazelnut', 49, 9.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Amaretto_decaf’, 49, 10.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Hazelnut_decaf', 49, 10.99, 0, 0)");

int [] updateCounts = stmt.executeBatch();

~

*

L]

L

not updatable.

#

If u want

public boolean next():
public boolean previous():
pu blic boolean first():

public boolean last():

public boolean absolute(int

row):

public boolean relative(int
row):

ResultSet Interface

Results are returned in the form of Table.
ResultSet maintains a cursor pointing to a row of a table.
By default, ResultSet object can be moved forward only and it is

Statement stmt = con.createStatement(ResultSet TYPE_SCROLL
_INSENSITIVE, ResultSet. COMNCUER_UFPDATABLE);

is used to move the cursor to the one row
next from the current position.

is used to move the cursor to the one row
previous from the current position.

is used to mowve the cursor to the first row
in result set object.

is used to move the cursor to the last row
in result set object.

is used to move the cursor to the specified
row numkber in the ResultSet object.

is used to move the cursor to the relative
row number in the ResultSet object, it may
be positive or negative.

o i is used to return the data of specified
public int getint{int column index): column index of the cument row as int.

is used to return the data of specified
public int getint(String columnMame): column mname of the current row as int

is used to return the data of specified
public String getStrimng (int columm bnd ex): colummn index of the current row as
String.

is used to return the data of specified
public Siring getString (String colummnMame): column name of the current row as
String.

~

PreparedStatement interface

® The Prepare dStatement interface creates an c:bject that represents

a precompiled 5QL statement.

* A S5QL statement is pre-compiled and stored in a
Preparedﬁtatement c:bject.T]lis c:hject can then be used to
eﬂicientl}' exeoute this statement multiple times.

MNote: The setter metheods for setting I parameter values must sPech'. types
that are compatible with the defined 5QL type of the input parameter. For
instance, if the I parameter has SQL type INTEGER, then the method setlnt
should be used.

Pub].ic interface Preparedﬁtatement extends Statement

~

Retarn Type Method Deescription
boolean emacute) Executes any kind of S0QL statement.
Executes the SQL guery in this
ResultSet | execut=Query() PreparedStatement object and retum s
the result s2t generated by the query.
Executes the SQL INSEE.T, UPDATE
int executeUpdate() or DELETE statement in this
PreparedStatement object.
: setBoolean (mt parameterindex, Sets the designated parameter to 2
void
boolean x) Jawa boolean value.
. setDate(nt parametetindex, Date | Sets the designated parameter to 2
void .
x) java.sgl Date value.
oid setDouble(int parameterindex Sets the designated parameter to 2
vt double x) Jawa double value.
. setFloat(mt parametetIndex, float |5Sets the designated parameter to 2
void
x) Jawa float valne.
: : : Sets the designated parameter to a
wvoid setint (int parameterIndex. int x) 1) =
Java mt value.
: setlong(int parameterIndex, long | Sets the designated parameter to 2
void = = =
) Java long value.
: setull (mt i Sets the designated parameter to SQL
void parameterIndex, int NULL =
sqlType)) '
: setString (mt Sets the designated parameter to a Java
void = : . =
parameterIndex, String x) | String value.
. setTime (mt Sets the designated parameter to a
void) : : -
parameterIndex, Time x) |javasgl. Tme value.

g ™

Statement PreparedStatement
It is used when SQL query is to be It is used when SQL query is to be
executed only once. executed multiple times.
Performance is very low. Performance iz better than Statement.
It iz base mterface. It extends statement interface.

Used to execute normal SQL queries. |Llsed to execute dynamic SQL queries.

For every execution compilation takes .)
‘ P! Compilation only one time

place

Procedure
Module
IN

ouT
INOUT

e ™~
CallableStatement

* To call a stored pmcedm‘e from the database we have to use
CallableStatement interface

Callable Statement cs = con.prepareCall(” {call proc_name(?.7)} 7);

Driver 5/W will i.mplement the interfaces
* JDBCTypes - JDBC "BRIDGE " Types

nt Types. INTEGER int, number
Float, double Types. FLOAT Number

String Types. VARCHAR varcharyvarchar?
Jeva.sql.Date Types. DATE Date

' T
Procedure

DELIMITER &

CHREATE [or REPLACE)]
PROCEDURE procedure_name [[IN | OUT | INOLUT] parameter_na
me datatype [, parameter datatype])]

BEGIN
Declaration_section
Executable secticn

END;

&

CAILL procedure_name { parameter(s)) delimiter

: N

PROCEDURE WITH IN AND OUT

delimiter //

create procedure emp_sal(IN var1l INT, OUT var2
INT)

begin

select sal into var2 from EMP1 where eno=wvar1;

end;

s

Procedures with OUT Parameter

DELIMITER 7
CREATE PROCEDLIRE datal5 (OLUIT varl INT)
BEGIY

SELECT max(sal) INTO varl FROM EMP1,

END;
LA

mysql> CALL datal5{(@ M),
mysql> SELECT (@M,

Procedures with INOUT Parameter

DELIMITER / /
CREATE PROCEDURE display_sal (INOUT var1 INT)
BEGIN

SELECT sal INTO vari FROM EMP1 WHERE eno=var1i:
END;
s

SET @M=2000
Call display_sal{(@M)
SELECT @M

Steps to call stores Procedure

® Make sure stored procedure is in database.
Create a callable statement interface Dbject

#* Provide values for every IIN parameter b} using cnrr‘espnndiug
setter methods.

® For every OUT parameters we have to register with JDBC types.
®* Execute Procedure call.

* Get results by using getter methods from OUT parameter.

o I

® Create a callable statement interface object
CallableStatement cs = con.prepareCall(" {call emp_sal(2,?)}");

Provide values for every [N parameter b}' using cc:ITesPnndjng setter

methods.
cs.setXXX(1, value);
® For every OUT parameters we have to register with JDBC types.
csregisterOutParameter(2, Types.XXX);
* Execute Procedure call.
cs.execute()

® Getresults by using getter methods from OUT parameter.
cs.ge‘liKKK(E)

Function Syntax

CREATE FUNCTION Function_Name(input_arguments)

RETURNS data_type
[DETERMINISTIC | READS SQL DATA | NO SQL CONTAINS SQL]

BEGIN

declare variables;

return variable;

END

